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In a lightly ionized plasma, charged-particle drift due to collisions
with neutral atoms occurs at different velocities;
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where by is the mobility of particles of the type @; wq is the Larmor
frequency; the upper sign refers to electrons and the lower sign to ions.

A difference in the charged-particle drift velocities can cause insta-
bility of an inhomogeneous lightly ionized plasma.

Let us consider the following example. Assume that in the initial state
of the plasma there is a concentration gradient along the x-axis, that
the external electric field is directed along the x-axis, and that the
magnetic field coincides with the z-axis. In this system, under the
influence of a Lorentz force the charged particles will move in a di-
rection opposite to the y-axis. Since electrons have a higher velocity
than jons, an electric field is induced in this direcrion. This electric
field, together with the magnetic field, causes particle drift in the
negative direction of the x~-axis. Consequently, if the concentration
gradient in the initial state is directed opposite to the x-axis this state
cannot be stable.

Instability of this kind has been examined by Simon [1]. On the basis
of studies by Kadomtsev and Nedospasov [2], as well as by Rosenbluth
and Longmire [3], Simon developed a theory of instability of a lightly
ionized plasma in crossed fields with an inhomogeneous density dis-
tribution in the direction of the external electric field. Somewhat
later, Simon's theory was developed [4].

In devices with inhomogeneous plasma flow in which the plasma (con-
ducting) layers alternate with nonconducting layers, the external elec-
tric field and concentration are normal to one another, We shall bear
this case in mind below and shall examine the instability of a lightly
ionized plasma in crossed fields when the concentration inhomogeneity
is in a direction perpendicular to the external electric field.

§1., Let us assume that the plasma is inhomogeneous
along the x-axis, that the external electric field is
homogeneous and directed along the y-axis, and that
the external magnetic field is homogeneous and has a
z-component. The thickness of the plasma layer is 2a,
and the dimensijons of thelayer alongthe y- and z-axes
are great enough that the boundary conditions can be
ignored in these directions.

Let us consider oscillations at a frequency consid-
erably lower thanthe Langmuir frequency. In addition,
we assume that the thickness of the plasma layer is
considerably greater than the Debye length. Therefore,
the plasma can be considered quasineutral and the
equation of charge conservation can be written as

o/ ot + Inv, = Zn, On/ 8t + \Jnv; = Zn. (1.1)

Here, recombination isignored, since itis assumed
to be negligible in a lightly ionized plasma (note that
recombination exerts a stabilizing influence on the
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initial state of the plasma); n is the concentration; Ve
and v; are the directional electron and ion velocities;
Z is the ionization frequency.

To determine the velocities v, and vi, we must use
the equations of motion of the particles. Let the
particle-velocity distribution be Maxwellian, let the
electron T, and ion T; temperatures be constant (ther-
mal diffusion is ignored), let the transport process be
diffusional (the directional particle velocity is much
less than the thermal), let the electric field have a
potential nature (the induced magnetic field is ignored,
in view of the low charged-particle concentration), let
the collision frequency of ions with neutral atoms vy,
be much greater than the ion cyclotron frequency wj,
and let the perturbation frequency « and the charged-
particle collision frequencies vg; and vj, be small in
comparison with the frequencies vy and Vin of colli-
sions with neutral atoms. Thus, we can write

nesy P — ne [v.B] — Tevn — NV ¥V, = Ov
negb 1 T'ign - nMv;,v; = 0- k (1.2)

Hence, the directional particle velocities are
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In (1.3), a tensor notation is used for the sum of
mononomials with repeating subscripts; b, and b; are
the electron and ion mobilities; Dg and Dj are the dif-
fusion coefficients of these particles.

Along the y~ and z-axes, the dimensions of the
plasma layer are assumed to be rather large, so the
perturbation of the concentration and of the electric
field can be taken as f (x)expi (kyy +kyz — wt). There-
fore, in linearization of (1.1) we assume

n o= n, () + n (%) exp iy + k. z —0t),
P o=y (2, y) + Uy (@) exp i (kyy + k.2 — 01),
Py = (%, ¥) =% (%) Py (@),

Oy / 0y = — E4 = const.
Here E; is the external electric field. Considering
(1.5), from (1.1) we obtain the continuity equations for

(1.5)



the initial state of the plasma
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and the equations of charge conservation in the pertur-
bations

— (@t i)y B [ (0 S Sma) — DT +
0 B, [Ba 2 i, (B — 2 )]
— B[k, (bnopr — Deny) + iy Eony] —
— k2 (bemaps — Do) = 0
—(Z + iw)ny— b, dz( od;’; +ddﬂ: m) (1.7

+ K2 (binghy + Ding) +

+ ik biEony — Dy o "‘1 =0, k=k2+k2.

The initial state of the plasma layer is determined
by Egs. (1.6). Various initial states are possible, de-
pending on the boundary conditions. Let us assume
that complete neutralization of the charged particles
occurs at the boundaries of the plasma layer, i.e.,
ng =0 when x =+a. A consequence of this assumption
is singularity of the induced electric field at the points
x =za, but this most likely is formal in meaning.

We have

ny = Ny e cos ve, v = Yym/ a, (1.8)
dgs Z p 1.9
o= (Pt ) f (D) g tee ()

Da(xoz',f‘vz): (1.10)

Dy = 5 (5D, + b.D).

where D, is the coefficient of ambipolar diffusion.

2. The problem of eigenvalues is raised in regard to the parameter
iw = iwy + o in (1.7). If there exists an eigenvalue with o < 0, the
initial state defined by (1.8) and (1.9) is unstable; otherwise, it is
stable.

To solve this problem, we must find the perturbations n; and ¢,
but exact solution of Egs. (1.7) is impossible, due to variability of the
coefficients in them. We shall therefore use the Galerkin method.

- From the sequence of coordinate functions that satisfy the conditions
of completeness, we take the first, thus limiting ourselves to seeking
approximations for the first eigenvalue. We note that a similar sim-~
plification of the method was used earlier by Kadomtsev and Nedospasov
[2] to study the instability of a positive column in a homogeneous lon-
gitudinal magnetic field with respect to helical perturbations. The
results of their calculations of anomalous diffusion are in good agree-
ment with the experimental data of Hoh and Lehnert [5].

Letting the perturbations n; and ¢, obey the boundary conditions
n; = P; = 0 when x = 2 a, we take as the coordinate function cos vx,
i.e., welet

ny = Nycosvz, P = ¥; cosvz, 2.1)

where N; and ¥; are complex constants.
Introducing (1.8), (1.9), and (2.1) into (1.7), with scalar multipli-
cation by the coordinate function in the region (—a < x < a), we obtain
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Further, in (2.2) we ignore the term Da(p2 + vz), since it issmaller
than the quantity ﬁkfu D, in the ratio Bb;/be. Then, with the condition
of nontriviality of the solutions for Ny and ¥;, from (2.2) and (2.3) we
obtain

&= Dk — Dyt +

Fokl Db, | b, — s (k p)2 [2D4 + (07,2 (D, D) (2.4)

T P2+ (s 0,1 ey
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The initial state is unstable if o < 0. Therefore, the instability
criterion takes the form

{D R LF® 4 (23 00,7,k 0V?] + FiFok 2D b, by <0t {D, |

(2.6)
+ Clao,T ko] + s ky? [2Dg 4 (0T (Dg + D)l

Let us make some estimates.

We denote by vE the value of v? at which the numerator of the
fraction in {2.4) vanishes:

2b,
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Then the numerator of this fraction can be written as

M=1k2b;D; (v—1)ve*/b, (v? = 1vo?).

Hence, it follows that:
1) If the wave numbers are such that y = 1 (u(z, cannot be less than
zero), the increment will be no greater than Dapz, ie.,

Lo | << (Yo 0,Teb; Fo)? Dt @7
2) For other wave numbers
o] < (Dgp* + Q).

As Q we can take the upper limit of the fraction

%o (k,0)* 12D, + (0,5, (D, D] #1
Fo? (s merekyp 2

The quantity 2/3kyF1 is not greater than the denominator of this
fraction, Therefore,

Q = p* (20 + (07, (Da + Dyl

and, comsequently,

[&] < Dy (0gTebi Eo)? [1 + (0,7 )]- (2.8)

Comparing (2.7) and (2.8), we conclude that for any wave numbers
the increment is less than

Dy @, Tevi0)? [1 -+ (0676 (210 = biEo),
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where vy, is the directional (current) velocity of jons in the initialstate
of the plasma.
In (2.5), the fraction is less than we:

@ = kyp {"b-L T Dy -+ ‘(QL‘L‘ [2Dg + (0T, (Dg + Dz)]} =
eTe

be
= keybiEo [1 + (0,701
Therefore, for any wave numbers

[0p | < kyvio 1+ (0,T,)].

The value w; can be positive as well as negative. This indicates
that forward and backward waves can exist,

As 1 increases, the positive part of the fraction in (2.4) decreases
less markedly than does the negative part. Therefore, thin plasma
layers must be less unstable than thick ones.

8. Let us consider the charged-particle balance in the plasma
layer. In the initial state, the charged-particle diffusion currents that
are directed along the y- and z-axes are not functions of the corre-
sponding coordinates. Therefore, these currents cannot show up in the
particle balance. The particle balance in the layer is determined by
the diffusion currents that act along the x-axis and by ionization.

Along the x-axis, the particle currents are caused by the induced
elecric field and by thie concentration gradient, and in the case of
electrons, by the external electric field as well, The particle-drift
velocities in this direction are the same, and the diffusion conditions
are ambipolar and are maintained by the electric fields. The corre-
sponding electron and ion currents I' g and I'gy are determined by the
relation

Foy” = Vo' = Bbe DoNoe™ (p cos vz - v sinvz) .

Here, p cos vl + vsin vl = 0; to the left of the point x = I these
currents are directed opposite to the x~axis, and to the right of this
point—along the x-axis. The total number of particles carried away
by each of the cuirents I’ S andT },X per unit time from a volume of
2aX 1 X 1is

ZT%L
Be+bi

The same number of particles of each kind are produced per unit
time in this volume by ionization. Thus, the particle balance in the
layer is maintained, and this allows the initial state to be considered
an equilibrium state.

To consider the particle balance in a perturbed state, we use the
ion-continuity equation in perturbations

vNoch pa.

io, + a)ny=

[ o A (o B0\ _ g om ] _
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(3.1)
— D;Any — Zny .

Here, n; and §; are given by relations(2.1), in which the following
relationship exists between Ny and ¥ (see (2.3)):
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Adhering, as before, to the ideas of the Galerkin method, we use
orthogonality condition (3.1) with respect to the balance function
cosvx. We introduce

a
{IY= \ feosvrdx.
~a
Then we obtain

{n}* =N, {An* = — (v* 4 I?) Na, (3.2)

{ ( a‘l’o )]*_ — iDBNyI,@:-—il’i— F1{no}y* xN; acos 8,
J b; -2

6=Re ({ ar;" 61131} + (noA‘Pﬂ*") @2

Now it is easy to establish the origin of the individual terms in
(2.4). The first two terms in (2.4) reflect the effect of ionization and
of variation in the diffusion currents governed by the perturbed- con-
centration gradient and by the effect on this concentration of the elec-
tric field induced in the initial state,

— Z{n}* — D; {Any}* — b; {61 (m %)} = Dkt —Dgpt,

since Z ® Da(p2 + p%). Here, this current variation, as opposed to
ionization, exerts a stabilizing influence on the initial state of the
plasma layer. The role of the term 6 depends on the sign of cos 6.
When & > 0, which means (o + Dgp* — Dikz) >0, this term is stabi-
lizing; when (o + Dap2 - Dikz) <0, it is destabilizing. If we compare
the real part of (3.1) with (2.4), we find that the condition cosé 2 0
is equivalent to the following:

Fok 2Deh; [ by =23 (kup)2 [2Dg - (0,7)* (Dg -+ Dy)]

and the quantity @, which is governed by the effect of the perturbed
electric field on the equilibrium concentration of ions, is adequate
for the third term (fraction) in (2.4).

The role of the perturbed electric field is shown graphically in Fig.
1. In this figure, curve 1 represents the equilibrium-concentration dis-
tribution, and curves 2 and 3 represent possible distributions of the x-
component of the perturbed electric field E;. Curve 2 corresponds to
cosd >0 and curve 3 to cosd < 0. The destabilizing role of the per-
turbed field (curve 3) consists of that it causes the ions to move toward
the center of the layer.

Instability means disturbance of the balance between the particles
leaving the layer and the particles produced by lonization. As a result,
an excess number of particles, as compared with the equilibrium state,
is formed in the layer. The excess number can be determined by mul-
tiplying the right-hand side of (3.1) by cosvx and by integrating it over
the volume 2a X T, X T, (T, and T, are half-wavelengths in the y~ and
z-directions). Now, owing to adequacy of the fraction in (2.4) and of
the quantity ©, we can write the instability condition as

b;

Fole, 2
N B,

—+ D, <——(kup) [2Dg 4 (0eTe) (Da + Di)l,
Dl < Dgp? —}—_ Fin*x {cosd |- (3.4)

In conclusion, we note that the imaginary part of (3.1) gives a re~
sult agreeing with (2.5), but in terms of the coefficient %,

Examination of the continuity equation for the electron component
leads to similar results, i.e., to (2.4), (2.5), and (3.4), since

VI = VI,

where 'S and T'} are the linearized eleciron and ion diffusion currents,



respectively. The roles of the individual terms in this equation, how-
ever, are different than in the continuity equation for fons. This is due
to the antiparallel motion of electrons in an electric field and to their
motion under the influence of Lorentz forces. Here, we consider only
one problem: we clarify the condition under which the field E,l( has a
distribution similar to curve 3 in Fig. 1.

Figure 2 shows the orientation of the fields in the plasma layer.
The electric field induced in the equilibrium state E varies along the
x-coordinate (see (1.9)). To the right of the yz-plane, which passes
through the point m (right region), this field is oriented along the x-
axis; to the left of this plane (left region), it is counter to the x-axis.

Under the influence of the external fields B and Ey, the electrons
drift in the positive direction of the x-axis withthe velocity weTebe, Eo-
Since the ion-drift velocity is different (in this case, it is zero, be-
cause the cyclotron frequency of the ions was ignored), charge separa-
tion occurs, and an electric field Eg;, whichcoincides with the positive
direction of the x-~axis, is induced in the layer. Electron drift under
the influence of the fields B and E occurs along the y-axis. The elec-
ric field E; induced as a result of this is oriented along the y-axis in
the left region and counter to it in the right region. The field Ej, to-
gether with the magnetic field, causes electron drift along the x-axis,
and in the layer an electric field E, is induced that is parallel to the
x-axis in the left region and antiparallel in the right region. Thus,
the x-component of the induced field is i(Eq + E,) in the left region
and i(Ey — E,) in the right region. Hence, it followsthat the perturbed
field Ey can be distributed similarly to curve 3 (Fig. 1) if in the right

region E, > Ey. Within this region this is equivalent to the requirement
E; > Eg or weTeE > Eg.
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